ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.12428
24
1

Transfer in Sequential Multi-armed Bandits via Reward Samples

19 March 2024
NR Rahul
Vaibhav Katewa
ArXivPDFHTML
Abstract

We consider a sequential stochastic multi-armed bandit problem where the agent interacts with bandit over multiple episodes. The reward distribution of the arms remain constant throughout an episode but can change over different episodes. We propose an algorithm based on UCB to transfer the reward samples from the previous episodes and improve the cumulative regret performance over all the episodes. We provide regret analysis and empirical results for our algorithm, which show significant improvement over the standard UCB algorithm without transfer.

View on arXiv
Comments on this paper