ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.12012
21
5

Convergence of Kinetic Langevin Monte Carlo on Lie groups

18 March 2024
Lingkai Kong
Molei Tao
    AI4CE
ArXivPDFHTML
Abstract

Explicit, momentum-based dynamics for optimizing functions defined on Lie groups was recently constructed, based on techniques such as variational optimization and left trivialization. We appropriately add tractable noise to the optimization dynamics to turn it into a sampling dynamics, leveraging the advantageous feature that the trivialized momentum variable is Euclidean despite that the potential function lives on a manifold. We then propose a Lie-group MCMC sampler, by delicately discretizing the resulting kinetic-Langevin-type sampling dynamics. The Lie group structure is exactly preserved by this discretization. Exponential convergence with explicit convergence rate for both the continuous dynamics and the discrete sampler are then proved under W2W_2W2​ distance. Only compactness of the Lie group and geodesically LLL-smoothness of the potential function are needed. To the best of our knowledge, this is the first convergence result for kinetic Langevin on curved spaces, and also the first quantitative result that requires no convexity or, at least not explicitly, any common relaxation such as isoperimetry.

View on arXiv
Comments on this paper