ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.10731
31
6

Giving a Hand to Diffusion Models: a Two-Stage Approach to Improving Conditional Human Image Generation

15 March 2024
Anton Pelykh
Ozge Mercanoglu
Richard Bowden
    DiffM
ArXivPDFHTML
Abstract

Recent years have seen significant progress in human image generation, particularly with the advancements in diffusion models. However, existing diffusion methods encounter challenges when producing consistent hand anatomy and the generated images often lack precise control over the hand pose. To address this limitation, we introduce a novel approach to pose-conditioned human image generation, dividing the process into two stages: hand generation and subsequent body outpainting around the hands. We propose training the hand generator in a multi-task setting to produce both hand images and their corresponding segmentation masks, and employ the trained model in the first stage of generation. An adapted ControlNet model is then used in the second stage to outpaint the body around the generated hands, producing the final result. A novel blending technique is introduced to preserve the hand details during the second stage that combines the results of both stages in a coherent way. This involves sequential expansion of the outpainted region while fusing the latent representations, to ensure a seamless and cohesive synthesis of the final image. Experimental evaluations demonstrate the superiority of our proposed method over state-of-the-art techniques, in both pose accuracy and image quality, as validated on the HaGRID dataset. Our approach not only enhances the quality of the generated hands but also offers improved control over hand pose, advancing the capabilities of pose-conditioned human image generation. The source code of the proposed approach is available at https://github.com/apelykh/hand-to-diffusion.

View on arXiv
Comments on this paper