ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.08799
10
0

Automating SBOM Generation with Zero-Shot Semantic Similarity

3 February 2024
Devin Pereira
Christopher Molloy
Sudipta Acharya
Steven H. H. Ding
ArXivPDFHTML
Abstract

It is becoming increasingly important in the software industry, especially with the growing complexity of software ecosystems and the emphasis on security and compliance for manufacturers to inventory software used on their systems. A Software-Bill-of-Materials (SBOM) is a comprehensive inventory detailing a software application's components and dependencies. Current approaches rely on case-based reasoning to inconsistently identify the software components embedded in binary files. We propose a different route, an automated method for generating SBOMs to prevent disastrous supply-chain attacks. Remaining on the topic of static code analysis, we interpret this problem as a semantic similarity task wherein a transformer model can be trained to relate a product name to corresponding version strings. Our test results are compelling, demonstrating the model's strong performance in the zero-shot classification task, further demonstrating the potential for use in a real-world cybersecurity context.

View on arXiv
Comments on this paper