ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.05861
43
3
v1v2 (latest)

DeepVM: Integrating Spot and On-Demand VMs for Cost-Efficient Deep Learning Clusters in the Cloud

9 March 2024
Yoochan Kim
Kihyun Kim
Yonghyeon Cho
Jinwoo Kim
Awais Khan
Ki-Dong Kang
B. An
Myung-Hoon Cha
H. Kim
Youngjae Kim
ArXiv (abs)PDFHTML
Abstract

Distributed Deep Learning (DDL), as a paradigm, dictates the use of GPU-based clusters as the optimal infrastructure for training large-scale Deep Neural Networks (DNNs). However, the high cost of such resources makes them inaccessible to many users. Public cloud services, particularly Spot Virtual Machines (VMs), offer a cost-effective alternative, but their unpredictable availability poses a significant challenge to the crucial checkpointing process in DDL. To address this, we introduce DeepVM, a novel solution that recommends cost-effective cluster configurations by intelligently balancing the use of Spot and On-Demand VMs. DeepVM leverages a four-stage process that analyzes instance performance using the FLOPP (FLoating-point Operations Per Price) metric, performs architecture-level analysis with linear programming, and identifies the optimal configuration for the user-specific needs. Extensive simulations and real-world deployments in the AWS environment demonstrate that DeepVM consistently outperforms other policies, reducing training costs and overall makespan. By enabling cost-effective checkpointing with Spot VMs, DeepVM opens up DDL to a wider range of users and facilitates a more efficient training of complex DNNs.

View on arXiv
Comments on this paper