53
19

How Well Can Transformers Emulate In-context Newton's Method?

Abstract

Transformer-based models have demonstrated remarkable in-context learning capabilities, prompting extensive research into its underlying mechanisms. Recent studies have suggested that Transformers can implement first-order optimization algorithms for in-context learning and even second order ones for the case of linear regression. In this work, we study whether Transformers can perform higher order optimization methods, beyond the case of linear regression. We establish that linear attention Transformers with ReLU layers can approximate second order optimization algorithms for the task of logistic regression and achieve ϵ\epsilon error with only a logarithmic to the error more layers. As a by-product we demonstrate the ability of even linear attention-only Transformers in implementing a single step of Newton's iteration for matrix inversion with merely two layers. These results suggest the ability of the Transformer architecture to implement complex algorithms, beyond gradient descent.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.