ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.02010
41
5

SA-SOT: Speaker-Aware Serialized Output Training for Multi-Talker ASR

4 March 2024
Zhiyun Fan
Linhao Dong
Jun Zhang
Lu Lu
Zejun Ma
ArXivPDFHTML
Abstract

Multi-talker automatic speech recognition plays a crucial role in scenarios involving multi-party interactions, such as meetings and conversations. Due to its inherent complexity, this task has been receiving increasing attention. Notably, the serialized output training (SOT) stands out among various approaches because of its simplistic architecture and exceptional performance. However, the frequent speaker changes in token-level SOT (t-SOT) present challenges for the autoregressive decoder in effectively utilizing context to predict output sequences. To address this issue, we introduce a masked t-SOT label, which serves as the cornerstone of an auxiliary training loss. Additionally, we utilize a speaker similarity matrix to refine the self-attention mechanism of the decoder. This strategic adjustment enhances contextual relationships within the same speaker's tokens while minimizing interactions between different speakers' tokens. We denote our method as speaker-aware SOT (SA-SOT). Experiments on the Librispeech datasets demonstrate that our SA-SOT obtains a relative cpWER reduction ranging from 12.75% to 22.03% on the multi-talker test sets. Furthermore, with more extensive training, our method achieves an impressive cpWER of 3.41%, establishing a new state-of-the-art result on the LibrispeechMix dataset.

View on arXiv
Comments on this paper