ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.01789
18
0

DECOR: Enhancing Logic Locking Against Machine Learning-Based Attacks

4 March 2024
Yinghua Hu
Kaixin Yang
Subhajit Dutta Chowdhury
Pierluigi Nuzzo
    AAML
ArXivPDFHTML
Abstract

Logic locking (LL) has gained attention as a promising intellectual property protection measure for integrated circuits. However, recent attacks, facilitated by machine learning (ML), have shown the potential to predict the correct key in multiple LL schemes by exploiting the correlation of the correct key value with the circuit structure. This paper presents a generic LL enhancement method based on a randomized algorithm that can significantly decrease the correlation between locked circuit netlist and correct key values in an LL scheme. Numerical results show that the proposed method can efficiently degrade the accuracy of state-of-the-art ML-based attacks down to around 50%, resulting in negligible advantage versus random guessing.

View on arXiv
Comments on this paper