ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.00376
175
2
v1v2v3 (latest)

Spurious Feature Eraser: Stabilizing Test-Time Adaptation for Vision-Language Foundation Model

1 March 2024
Huan Ma
Yan Zhu
Changqing Zhang
Peilin Zhao
Baoyuan Wu
Long-Kai Huang
Qinghua Hu
Bing Wu
    VLM
ArXiv (abs)PDFHTML
Abstract

Vision-language foundation models have exhibited remarkable success across a multitude of downstream tasks due to their scalability on extensive image-text paired data. However, these models also display significant limitations when applied to downstream tasks, such as fine-grained image classification, as a result of ``decision shortcuts'' that hinder their generalization capabilities. In this work, we find that the CLIP model possesses a rich set of features, encompassing both \textit{desired invariant causal features} and \textit{undesired decision shortcuts}. Moreover, the underperformance of CLIP on downstream tasks originates from its inability to effectively utilize pre-trained features in accordance with specific task requirements. To address this challenge, we propose a simple yet effective method, Spurious Feature Eraser (SEraser), to alleviate the decision shortcuts by erasing the spurious features. Specifically, we introduce a test-time prompt tuning paradigm that optimizes a learnable prompt, thereby compelling the model to exploit invariant features while disregarding decision shortcuts during the inference phase. The proposed method effectively alleviates excessive dependence on potentially misleading spurious information. We conduct comparative analysis of the proposed method against various approaches which validates the significant superiority.

View on arXiv
Comments on this paper