ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.17257
31
15

RIME: Robust Preference-based Reinforcement Learning with Noisy Preferences

27 February 2024
Jie Cheng
Gang Xiong
Xingyuan Dai
Q. Miao
Yisheng Lv
Fei-Yue Wang
ArXivPDFHTML
Abstract

Preference-based Reinforcement Learning (PbRL) circumvents the need for reward engineering by harnessing human preferences as the reward signal. However, current PbRL methods excessively depend on high-quality feedback from domain experts, which results in a lack of robustness. In this paper, we present RIME, a robust PbRL algorithm for effective reward learning from noisy preferences. Our method utilizes a sample selection-based discriminator to dynamically filter out noise and ensure robust training. To counteract the cumulative error stemming from incorrect selection, we suggest a warm start for the reward model, which additionally bridges the performance gap during the transition from pre-training to online training in PbRL. Our experiments on robotic manipulation and locomotion tasks demonstrate that RIME significantly enhances the robustness of the state-of-the-art PbRL method. Code is available at https://github.com/CJReinforce/RIME_ICML2024.

View on arXiv
Comments on this paper