ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.16878
39
0

EvoGPT-f: An Evolutionary GPT Framework for Benchmarking Formal Math Languages

12 February 2024
Johnathan Mercer
ArXivPDFHTML
Abstract

Formal mathematics is the discipline of translating mathematics into a programming language in which any statement can be unequivocally checked by a computer. Mathematicians and computer scientists have spent decades of painstaking formalization efforts developing languages such as Coq, HOL, and Lean. Machine learning research has converged on these formal math corpora and given rise to an assortment of methodologies to aid in interactive and automated theorem proving. However, these papers have primarily focused on one method, for one proof task, in one language. This paper introduces EvoGPT-f: a novel evolutionary framework for the first systematic quantitative analysis of the differential machine learnability of five formal math corpora (Lean 3, Lean 4, Coq, HOL 4, HOL Light) using four tokenization methods (character, word-level, Byte Pair Encoding and StarCoder tokenizer). This paper does not put to rest the question of the "best" or "easiest" language to learn. Rather, this framework and preliminary findings begin to illuminate the differential machine learnability of these languages, offering a foundation to forge more systematic quantitative and qualitative comparative research across communities.

View on arXiv
Comments on this paper