ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.16681
24
2

Enhancing Continuous Domain Adaptation with Multi-Path Transfer Curriculum

26 February 2024
Hanbing Liu
Junchang Wang
Xuan Zhang
Ye Guo
Yang Li
ArXivPDFHTML
Abstract

Addressing the large distribution gap between training and testing data has long been a challenge in machine learning, giving rise to fields such as transfer learning and domain adaptation. Recently, Continuous Domain Adaptation (CDA) has emerged as an effective technique, closing this gap by utilizing a series of intermediate domains. This paper contributes a novel CDA method, W-MPOT, which rigorously addresses the domain ordering and error accumulation problems overlooked by previous studies. Specifically, we construct a transfer curriculum over the source and intermediate domains based on Wasserstein distance, motivated by theoretical analysis of CDA. Then we transfer the source model to the target domain through multiple valid paths in the curriculum using a modified version of continuous optimal transport. A bidirectional path consistency constraint is introduced to mitigate the impact of accumulated mapping errors during continuous transfer. We extensively evaluate W-MPOT on multiple datasets, achieving up to 54.1\% accuracy improvement on multi-session Alzheimer MR image classification and 94.7\% MSE reduction on battery capacity estimation.

View on arXiv
Comments on this paper