ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.16639
24
0

Differentiable Particle Filtering using Optimal Placement Resampling

26 February 2024
Domonkos Csuzdi
Olivér Törő
Tamás Bécsi
ArXivPDFHTML
Abstract

Particle filters are a frequent choice for inference tasks in nonlinear and non-Gaussian state-space models. They can either be used for state inference by approximating the filtering distribution or for parameter inference by approximating the marginal data (observation) likelihood. A good proposal distribution and a good resampling scheme are crucial to obtain low variance estimates. However, traditional methods like multinomial resampling introduce nondifferentiability in PF-based loss functions for parameter estimation, prohibiting gradient-based learning tasks. This work proposes a differentiable resampling scheme by deterministic sampling from an empirical cumulative distribution function. We evaluate our method on parameter inference tasks and proposal learning.

View on arXiv
Comments on this paper