ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.16048
19
19

LLMs with Chain-of-Thought Are Non-Causal Reasoners

25 February 2024
Guangsheng Bao
Hongbo Zhang
Linyi Yang
Cunxiang Wang
Yue Zhang
    LRM
ArXiv (abs)PDFHTMLGithub (21★)
Abstract

This paper explores the role of the Chain of Thought (CoT) in Large Language Models (LLMs) reasoning. Despite its potential to improve task performance, our analysis reveals a surprising frequency of correct answers following incorrect CoTs and vice versa. We employ causal analysis to assess the cause-effect relationship between CoTs/instructions and answers in LLMs, uncovering the Structural Causal Model (SCM) that LLMs approximate. By comparing the implied SCM with that of human reasoning, we highlight discrepancies between LLM and human reasoning processes. We further examine the factors influencing the causal structure of the implied SCM, revealing that in-context learning, supervised fine-tuning, and reinforcement learning on human feedback significantly impact the causal relations. We release the code and results at https://github.com/StevenZHB/CoT_Causal_Analysis.

View on arXiv
Comments on this paper