We present sDBSCAN, a scalable density-based clustering algorithm in high dimensions with cosine distance. Utilizing the neighborhood-preserving property of random projections, sDBSCAN can quickly identify core points and their neighborhoods, the primary hurdle of density-based clustering. Theoretically, sDBSCAN outputs a clustering structure similar to DBSCAN under mild conditions with high probability. To further facilitate sDBSCAN, we present sOPTICS, a scalable OPTICS for interactive exploration of the intrinsic clustering structure. We also extend sDBSCAN and sOPTICS to L2, L1, , and Jensen-Shannon distances via random kernel features. Empirically, sDBSCAN is significantly faster and provides higher accuracy than many other clustering algorithms on real-world million-point data sets. On these data sets, sDBSCAN and sOPTICS run in a few minutes, while the scikit-learn's counterparts demand several hours or cannot run due to memory constraints.
View on arXiv@article{xu2025_2402.15679, title={ Scalable Density-based Clustering with Random Projections }, author={ Haochuan Xu and Ninh Pham }, journal={arXiv preprint arXiv:2402.15679}, year={ 2025 } }