ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.14862
16
1

SISSA: Real-time Monitoring of Hardware Functional Safety and Cybersecurity with In-vehicle SOME/IP Ethernet Traffic

21 February 2024
Qi Liu
Xingyu Li
Ke Sun
Yufeng Li
Yanchen Liu
ArXivPDFHTML
Abstract

Scalable service-Oriented Middleware over IP (SOME/IP) is an Ethernet communication standard protocol in the Automotive Open System Architecture (AUTOSAR), promoting ECU-to-ECU communication over the IP stack. However, SOME/IP lacks a robust security architecture, making it susceptible to potential attacks. Besides, random hardware failure of ECU will disrupt SOME/IP communication. In this paper, we propose SISSA, a SOME/IP communication traffic-based approach for modeling and analyzing in-vehicle functional safety and cyber security. Specifically, SISSA models hardware failures with the Weibull distribution and addresses five potential attacks on SOME/IP communication, including Distributed Denial-of-Services, Man-in-the-Middle, and abnormal communication processes, assuming a malicious user accesses the in-vehicle network. Subsequently, SISSA designs a series of deep learning models with various backbones to extract features from SOME/IP sessions among ECUs. We adopt residual self-attention to accelerate the model's convergence and enhance detection accuracy, determining whether an ECU is under attack, facing functional failure, or operating normally. Additionally, we have created and annotated a dataset encompassing various classes, including indicators of attack, functionality, and normalcy. This contribution is noteworthy due to the scarcity of publicly accessible datasets with such characteristics.Extensive experimental results show the effectiveness and efficiency of SISSA.

View on arXiv
Comments on this paper