ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.13058
22
2

Random Graph Set and Evidence Pattern Reasoning Model

20 February 2024
Tianxiang Zhan
Zhen Li
Yong Deng
ArXivPDFHTML
Abstract

Evidence theory is widely used in decision-making and reasoning systems. In previous research, Transferable Belief Model (TBM) is a commonly used evidential decision making model, but TBM is a non-preference model. In order to better fit the decision making goals, the Evidence Pattern Reasoning Model (EPRM) is proposed. By defining pattern operators and decision making operators, corresponding preferences can be set for different tasks. Random Permutation Set (RPS) expands order information for evidence theory. It is hard for RPS to characterize the complex relationship between samples such as cycling, paralleling relationships. Therefore, Random Graph Set (RGS) were proposed to model complex relationships and represent more event types. In order to illustrate the significance of RGS and EPRM, an experiment of aircraft velocity ranking was designed and 10,000 cases were simulated. The implementation of EPRM called Conflict Resolution Decision optimized 18.17\% of the cases compared to Mean Velocity Decision, effectively improving the aircraft velocity ranking. EPRM provides a unified solution for evidence-based decision making.

View on arXiv
Comments on this paper