35
3

GRAFFORD: A Benchmark Dataset for Testing the Knowledge of Object Affordances of Language and Vision Models

Abstract

We investigate the knowledge of object affordances in pre-trained language models (LMs) and pre-trained Vision-Language models (VLMs). Transformers-based large pre-trained language models (PTLM) learn contextual representation from massive amounts of unlabeled text and are shown to perform impressively in downstream NLU tasks. In parallel, a growing body of literature shows that PTLMs fail inconsistently and non-intuitively, showing a lack of reasoning and grounding. To take a first step toward quantifying the effect of grounding (or lack thereof), we curate a novel and comprehensive dataset of object affordances -- GrAFFORD, characterized by 15 affordance classes. Unlike affordance datasets collected in vision and language domains, we annotate in-the-wild sentences with objects and affordances. Experimental results reveal that PTLMs exhibit limited reasoning abilities when it comes to uncommon object affordances. We also observe that pre-trained VLMs do not necessarily capture object affordances effectively. Through few-shot fine-tuning, we demonstrate improvement in affordance knowledge in PTLMs and VLMs. Our research contributes a novel dataset for language grounding tasks, and presents insights into LM capabilities, advancing the understanding of object affordances. Codes and data are available at https://github.com/sayantan11995/Affordance

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.