98
1

Scalable Decentralized Algorithms for Online Personalized Mean Estimation

Abstract

In numerous settings, agents lack sufficient data to directly learn a model. Collaborating with other agents may help, but it introduces a bias-variance trade-off, when local data distributions differ. A key challenge is for each agent to identify clients with similar distributions while learning the model, a problem that remains largely unresolved. This study focuses on a simplified version of the overarching problem, where each agent collects samples from a real-valued distribution over time to estimate its mean. Existing algorithms face impractical space and time complexities (quadratic in the number of agents A). To address scalability challenges, we propose a framework where agents self-organize into a graph, allowing each agent to communicate with only a selected number of peers r. We introduce two collaborative mean estimation algorithms: one draws inspiration from belief propagation, while the other employs a consensus-based approach, with complexity of O( r |A| log |A|) and O(r |A|), respectively. We establish conditions under which both algorithms yield asymptotically optimal estimates and offer a theoretical characterization of their performance.

View on arXiv
@article{galante2025_2402.12812,
  title={ Scalable Decentralized Algorithms for Online Personalized Mean Estimation },
  author={ Franco Galante and Giovanni Neglia and Emilio Leonardi },
  journal={arXiv preprint arXiv:2402.12812},
  year={ 2025 }
}
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.