ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.12220
26
2

Bayesian Parameter-Efficient Fine-Tuning for Overcoming Catastrophic Forgetting

19 February 2024
Haolin Chen
Philip N. Garner
    CLL
ArXivPDFHTML
Abstract

Although motivated by the adaptation of text-to-speech synthesis models, we argue that more generic parameter-efficient fine-tuning (PEFT) is an appropriate framework to do such adaptation. However, catastrophic forgetting remains an issue with PEFT, damaging the pre-trained model's inherent capabilities. We demonstrate that existing Bayesian learning techniques can be applied to PEFT to prevent catastrophic forgetting as long as the parameter shift of the fine-tuned layers can be calculated differentiably. In a principled series of experiments on language modeling and speech synthesis tasks, we utilize established Laplace approximations, including diagonal and Kronecker factored approaches, to regularize PEFT with the low-rank adaptation (LoRA) and compare their performance in pre-training knowledge preservation. Our results demonstrate that catastrophic forgetting can be overcome by our methods without degrading the fine-tuning performance, and using the Kronecker factored approximations produces a better preservation of the pre-training knowledge than the diagonal ones.

View on arXiv
Comments on this paper