ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.11940
27
2

AICAttack: Adversarial Image Captioning Attack with Attention-Based Optimization

19 February 2024
Jiyao Li
Mingze Ni
Yifei Dong
Tianqing Zhu
Wei Liu
    AAML
ArXivPDFHTML
Abstract

Recent advances in deep learning research have shown remarkable achievements across many tasks in computer vision (CV) and natural language processing (NLP). At the intersection of CV and NLP is the problem of image captioning, where the related models' robustness against adversarial attacks has not been well studied. In this paper, we present a novel adversarial attack strategy, which we call AICAttack (Attention-based Image Captioning Attack), designed to attack image captioning models through subtle perturbations on images. Operating within a black-box attack scenario, our algorithm requires no access to the target model's architecture, parameters, or gradient information. We introduce an attention-based candidate selection mechanism that identifies the optimal pixels to attack, followed by Differential Evolution (DE) for perturbing pixels' RGB values. We demonstrate AICAttack's effectiveness through extensive experiments on benchmark datasets with multiple victim models. The experimental results demonstrate that our method surpasses current leading-edge techniques by effectively distributing the alignment and semantics of words in the output.

View on arXiv
Comments on this paper