ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.11190
4
30

Disclosure and Mitigation of Gender Bias in LLMs

17 February 2024
Xiangjue Dong
Yibo Wang
Philip S. Yu
James Caverlee
ArXivPDFHTML
Abstract

Large Language Models (LLMs) can generate biased responses. Yet previous direct probing techniques contain either gender mentions or predefined gender stereotypes, which are challenging to comprehensively collect. Hence, we propose an indirect probing framework based on conditional generation. This approach aims to induce LLMs to disclose their gender bias even without explicit gender or stereotype mentions. We explore three distinct strategies to disclose explicit and implicit gender bias in LLMs. Our experiments demonstrate that all tested LLMs exhibit explicit and/or implicit gender bias, even when gender stereotypes are not present in the inputs. In addition, an increased model size or model alignment amplifies bias in most cases. Furthermore, we investigate three methods to mitigate bias in LLMs via Hyperparameter Tuning, Instruction Guiding, and Debias Tuning. Remarkably, these methods prove effective even in the absence of explicit genders or stereotypes.

View on arXiv
Comments on this paper