ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.10424
16
2

Understanding In-Context Learning with a Pelican Soup Framework

16 February 2024
Ting-Rui Chiang
Dani Yogatama
ArXivPDFHTML
Abstract

Many existing theoretical analyses of in-context learning for natural language processing are based on latent variable models that leaves gaps between theory and practice. We aim to close these gaps by proposing a theoretical framework, the Pelican Soup Framework. In this framework, we introduce (1) the notion of a common sense knowledge base, (2) a general formalism for natural language classification tasks, and the notion of (3) meaning association. Under this framework, we can establish a O(1/T)\mathcal{O}(1/T)O(1/T) loss bound for in-context learning, where TTT is the number of example-label pairs in the demonstration. Compared with previous works, our bound reflects the effect of the choice of verbalizers and the effect of instruction tuning. An additional notion of \textit{atom concepts} makes our framework possible to explain the generalization to tasks unseen in the language model training data. Finally, we propose a toy setup, Calcutec, and a digit addition task that mimics types of distribution shifts a model needs to overcome to perform in-context learning. We also experiment with GPT2-Large on real-world NLP tasks. Our empirical results demonstrate the efficacy of our framework to explain in-context learning.

View on arXiv
Comments on this paper