ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.09481
11
4

Cryptomite: A versatile and user-friendly library of randomness extractors

13 February 2024
Cameron Foreman
Richie Yeung
A. Edgington
Florian J. Curchod
ArXivPDFHTML
Abstract

We present Cryptomite, a Python library of randomness extractor implementations. The library offers a range of two-source, seeded and deterministic randomness extractors, together with parameter calculation modules, making it easy to use and suitable for a variety of applications. We also present theoretical results, including new extractor constructions and improvements to existing extractor parameters. The extractor implementations are efficient in practice and tolerate input sizes of up to 240>10122^{40} > 10^{12}240>1012 bits. They are also numerically precise (implementing convolutions using the Number Theoretic Transform to avoid floating point arithmetic), making them well suited to cryptography. The algorithms and parameter calculation are described in detail, including illustrative code examples and performance benchmarking.

View on arXiv
Comments on this paper