26
1

Generating Diverse Translation with Perturbed kNN-MT

Yuto Nishida
Makoto Morishita
Hidetaka Kamigaito
Taro Watanabe
Abstract

Generating multiple translation candidates would enable users to choose the one that satisfies their needs. Although there has been work on diversified generation, there exists room for improving the diversity mainly because the previous methods do not address the overcorrection problem -- the model underestimates a prediction that is largely different from the training data, even if that prediction is likely. This paper proposes methods that generate more diverse translations by introducing perturbed k-nearest neighbor machine translation (kNN-MT). Our methods expand the search space of kNN-MT and help incorporate diverse words into candidates by addressing the overcorrection problem. Our experiments show that the proposed methods drastically improve candidate diversity and control the degree of diversity by tuning the perturbation's magnitude.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.