ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.08772
21
0

Optimal Task Assignment and Path Planning using Conflict-Based Search with Precedence and Temporal Constraints

13 February 2024
Yu Quan Chong
Jiaoyang Li
Katia P. Sycara
ArXivPDFHTML
Abstract

The Multi-Agent Path Finding (MAPF) problem entails finding collision-free paths for a set of agents, guiding them from their start to goal locations. However, MAPF does not account for several practical task-related constraints. For example, agents may need to perform actions at goal locations with specific execution times, adhering to predetermined orders and timeframes. Moreover, goal assignments may not be predefined for agents, and the optimization objective may lack an explicit definition. To incorporate task assignment, path planning, and a user-defined objective into a coherent framework, this paper examines the Task Assignment and Path Finding with Precedence and Temporal Constraints (TAPF-PTC) problem. We augment Conflict-Based Search (CBS) to simultaneously generate task assignments and collision-free paths that adhere to precedence and temporal constraints, maximizing an objective quantified by the return from a user-defined reward function in reinforcement learning (RL). Experimentally, we demonstrate that our algorithm, CBS-TA-PTC, can solve highly challenging bomb-defusing tasks with precedence and temporal constraints efficiently relative to MARL and adapted Target Assignment and Path Finding (TAPF) methods.

View on arXiv
Comments on this paper