23
0

ADS: Approximate Densest Subgraph for Novel Image Discovery

Abstract

The volume of image repositories continues to grow. Despite the availability of content-based addressing, we still lack a lightweight tool that allows us to discover images of distinct characteristics from a large collection. In this paper, we propose a fast and training-free algorithm for novel image discovery. The key of our algorithm is formulating a collection of images as a perceptual distance-weighted graph, within which our task is to locate the K-densest subgraph that corresponds to a subset of the most unique images. While solving this problem is not just NP-hard but also requires a full computation of the potentially huge distance matrix, we propose to relax it into a K-sparse eigenvector problem that we can efficiently solve using stochastic gradient descent (SGD) without explicitly computing the distance matrix. We compare our algorithm against state-of-the-arts on both synthetic and real datasets, showing that it is considerably faster to run with a smaller memory footprint while able to mine novel images more accurately.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.