ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.08712
60
5

BECoTTA: Input-dependent Online Blending of Experts for Continual Test-time Adaptation

13 February 2024
Daeun Lee
Jaehong Yoon
Sung Ju Hwang
    CLL
    TTA
ArXivPDFHTML
Abstract

Continual Test Time Adaptation (CTTA) is required to adapt efficiently to continuous unseen domains while retaining previously learned knowledge. However, despite the progress of CTTA, it is still challenging to deploy the model with improved forgetting-adaptation trade-offs and efficiency. In addition, current CTTA scenarios assume only the disjoint situation, even though real-world domains are seamlessly changed. To address these challenges, this paper proposes BECoTTA, an input-dependent and efficient modular framework for CTTA. We propose Mixture-of Domain Low-rank Experts (MoDE) that contains two core components: (i) Domain-Adaptive Routing, which helps to selectively capture the domain adaptive knowledge with multiple domain routers, and (ii) Domain-Expert Synergy Loss to maximize the dependency between each domain and expert. We validate that our method outperforms multiple CTTA scenarios, including disjoint and gradual domain shits, while only requiring ~98% fewer trainable parameters. We also provide analyses of our method, including the construction of experts, the effect of domain-adaptive experts, and visualizations.

View on arXiv
Comments on this paper