ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.06018
25
6

A versatile robotic hand with 3D perception, force sensing for autonomous manipulation

8 February 2024
N. Correll
Dylan Kriegman
Stephen Otto
James Watson
ArXivPDFHTML
Abstract

We describe a force-controlled robotic gripper with built-in tactile and 3D perception. We also describe a complete autonomous manipulation pipeline consisting of object detection, segmentation, point cloud processing, force-controlled manipulation, and symbolic (re)-planning. The design emphasizes versatility in terms of applications, manufacturability, use of commercial off-the-shelf parts, and open-source software. We validate the design by characterizing force control (achieving up to 32N, controllable in steps of 0.08N), force measurement, and two manipulation demonstrations: assembly of the Siemens gear assembly problem, and a sensor-based stacking task requiring replanning. These demonstrate robust execution of long sequences of sensor-based manipulation tasks, which makes the resulting platform a solid foundation for researchers in task-and-motion planning, educators, and quick prototyping of household, industrial and warehouse automation tasks.

View on arXiv
Comments on this paper