ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.03744
77
83

INSIDE: LLMs' Internal States Retain the Power of Hallucination Detection

6 February 2024
Chao Chen
Kai-Chun Liu
Ze Chen
Yi Gu
Yue-bo Wu
Mingyuan Tao
Zhihang Fu
Jieping Ye
    HILM
ArXivPDFHTML
Abstract

Knowledge hallucination have raised widespread concerns for the security and reliability of deployed LLMs. Previous efforts in detecting hallucinations have been employed at logit-level uncertainty estimation or language-level self-consistency evaluation, where the semantic information is inevitably lost during the token-decoding procedure. Thus, we propose to explore the dense semantic information retained within LLMs' \textbf{IN}ternal \textbf{S}tates for halluc\textbf{I}nation \textbf{DE}tection (\textbf{INSIDE}). In particular, a simple yet effective \textbf{EigenScore} metric is proposed to better evaluate responses' self-consistency, which exploits the eigenvalues of responses' covariance matrix to measure the semantic consistency/diversity in the dense embedding space. Furthermore, from the perspective of self-consistent hallucination detection, a test time feature clipping approach is explored to truncate extreme activations in the internal states, which reduces overconfident generations and potentially benefits the detection of overconfident hallucinations. Extensive experiments and ablation studies are performed on several popular LLMs and question-answering (QA) benchmarks, showing the effectiveness of our proposal.

View on arXiv
Comments on this paper