ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.02675
37
11

Verifiable evaluations of machine learning models using zkSNARKs

5 February 2024
Tobin South
Alexander Camuto
Shrey Jain
Shayla Nguyen
Robert Mahari
Christian Paquin
Jason Morton
Alex Pentland
    MLAU
    ALM
ArXivPDFHTML
Abstract

In a world of increasing closed-source commercial machine learning models, model evaluations from developers must be taken at face value. These benchmark results-whether over task accuracy, bias evaluations, or safety checks-are traditionally impossible to verify by a model end-user without the costly or impossible process of re-performing the benchmark on black-box model outputs. This work presents a method of verifiable model evaluation using model inference through zkSNARKs. The resulting zero-knowledge computational proofs of model outputs over datasets can be packaged into verifiable evaluation attestations showing that models with fixed private weights achieve stated performance or fairness metrics over public inputs. We present a flexible proving system that enables verifiable attestations to be performed on any standard neural network model with varying compute requirements. For the first time, we demonstrate this across a sample of real-world models and highlight key challenges and design solutions. This presents a new transparency paradigm in the verifiable evaluation of private models.

View on arXiv
Comments on this paper