ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.01592
41
1

Towards Sustainable Workplace Mental Health: A Novel Approach to Early Intervention and Support

2 February 2024
David W. Vinson
Mihael Arcan
Paul-David Niland
Fionn Delahunty
    AI4MH
ArXivPDFHTML
Abstract

Employee well-being is a critical concern in the contemporary workplace, as highlighted by the American Psychological Association's 2021 report, indicating that 71% of employees experience stress or tension. This stress contributes significantly to workplace attrition and absenteeism, with 61% of attrition and 16% of sick days attributed to poor mental health. A major challenge for employers is that employees often remain unaware of their mental health issues until they reach a crisis point, resulting in limited utilization of corporate well-being benefits. This research addresses this challenge by presenting a groundbreaking stress detection algorithm that provides real-time support preemptively. Leveraging automated chatbot technology, the algorithm objectively measures mental health levels by analyzing chat conversations, offering personalized treatment suggestions in real-time based on linguistic biomarkers. The study explores the feasibility of integrating these innovations into practical learning applications within real-world contexts and introduces a chatbot-style system integrated into the broader employee experience platform. This platform, encompassing various features, aims to enhance overall employee well-being, detect stress in real time, and proactively engage with individuals to improve support effectiveness, demonstrating a 22% increase when assistance is provided early. Overall, the study emphasizes the importance of fostering a supportive workplace environment for employees' mental health.

View on arXiv
Comments on this paper