ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2402.01298
17
0

Learning Semantic Information from Raw Audio Signal Using Both Contextual and Phonetic Representations

2 February 2024
Jaeyeon Kim
Injune Hwang
Kyogu Lee
ArXivPDFHTML
Abstract

We propose a framework to learn semantics from raw audio signals using two types of representations, encoding contextual and phonetic information respectively. Specifically, we introduce a speech-to-unit processing pipeline that captures two types of representations with different time resolutions. For the language model, we adopt a dual-channel architecture to incorporate both types of representation. We also present new training objectives, masked context reconstruction and masked context prediction, that push models to learn semantics effectively. Experiments on the sSIMI metric of Zero Resource Speech Benchmark 2021 and Fluent Speech Command dataset show our framework learns semantics better than models trained with only one type of representation.

View on arXiv
Comments on this paper