ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.17790
47
1

RADIN: Souping on a Budget

31 January 2024
Thibaut Menes
Olivier Risser-Maroix
    MoMe
ArXivPDFHTML
Abstract

Model Soups, extending Stochastic Weights Averaging (SWA), combine models fine-tuned with different hyperparameters. Yet, their adoption is hindered by computational challenges due to subset selection issues. In this paper, we propose to speed up model soups by approximating soups performance using averaged ensemble logits performances. Theoretical insights validate the congruence between ensemble logits and weight averaging soups across any mixing ratios. Our Resource ADjusted soups craftINg (RADIN) procedure stands out by allowing flexible evaluation budgets, enabling users to adjust his budget of exploration adapted to his resources while increasing performance at lower budget compared to previous greedy approach (up to 4% on ImageNet).

View on arXiv
Comments on this paper