ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.15773
20
0

Evaluation of k-means time series clustering based on z-normalization and NP-Free

28 January 2024
Ming-Chang Lee
Jia-Chun Lin
Volker Stolz
    AI4TS
ArXivPDFHTML
Abstract

Despite the widespread use of k-means time series clustering in various domains, there exists a gap in the literature regarding its comprehensive evaluation with different time series normalization approaches. This paper seeks to fill this gap by conducting a thorough performance evaluation of k-means time series clustering on real-world open-source time series datasets. The evaluation focuses on two distinct normalization techniques: z-normalization and NP-Free. The former is one of the most commonly used normalization approach for time series. The latter is a real-time time series representation approach, which can serve as a time series normalization approach. The primary objective of this paper is to assess the impact of these two normalization techniques on k-means time series clustering in terms of its clustering quality. The experiments employ the silhouette score, a well-established metric for evaluating the quality of clusters in a dataset. By systematically investigating the performance of k-means time series clustering with these two normalization techniques, this paper addresses the current gap in k-means time series clustering evaluation and contributes valuable insights to the development of time series clustering.

View on arXiv
Comments on this paper