ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.14387
31
3

Inconsistency Masks: Removing the Uncertainty from Input-Pseudo-Label Pairs

25 January 2024
Michael R. H. Vorndran
Bernhard F. Roeck
    VLM
    ISeg
    UQCV
ArXivPDFHTML
Abstract

Efficiently generating sufficient labeled data remains a major bottleneck in deep learning, particularly for image segmentation tasks where labeling requires significant time and effort. This study tackles this issue in a resource-constrained environment, devoid of extensive datasets or pre-existing models. We introduce Inconsistency Masks (IM), a novel approach that filters uncertainty in image-pseudo-label pairs to substantially enhance segmentation quality, surpassing traditional semi-supervised learning techniques. Employing IM, we achieve strong segmentation results with as little as 10% labeled data, across four diverse datasets and it further benefits from integration with other techniques, indicating broad applicability. Notably on the ISIC 2018 dataset, three of our hybrid approaches even outperform models trained on the fully labeled dataset. We also present a detailed comparative analysis of prevalent semi-supervised learning strategies, all under uniform starting conditions, to underline our approach's effectiveness and robustness. The full code is available at: https://github.com/MichaelVorndran/InconsistencyMasks

View on arXiv
Comments on this paper