ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.13851
11
0

Scaling NVIDIA's Multi-speaker Multi-lingual TTS Systems with Zero-Shot TTS to Indic Languages

24 January 2024
Akshit Arora
Rohan Badlani
Sungwon Kim
Rafael Valle
Bryan Catanzaro
ArXivPDFHTML
Abstract

In this paper, we describe the TTS models developed by NVIDIA for the MMITS-VC (Multi-speaker, Multi-lingual Indic TTS with Voice Cloning) 2024 Challenge. In Tracks 1 and 2, we utilize RAD-MMM to perform few-shot TTS by training additionally on 5 minutes of target speaker data. In Track 3, we utilize P-Flow to perform zero-shot TTS by training on the challenge dataset as well as external datasets. We use HiFi-GAN vocoders for all submissions. RAD-MMM performs competitively on Tracks 1 and 2, while P-Flow ranks first on Track 3, with mean opinion score (MOS) 4.4 and speaker similarity score (SMOS) of 3.62.

View on arXiv
Comments on this paper