ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.12473
8
9

Boosting Unknown-number Speaker Separation with Transformer Decoder-based Attractor

23 January 2024
Younglo Lee
Shukjae Choi
Byeonghak Kim
Zhong-Qiu Wang
Shinji Watanabe
    MoE
ArXivPDFHTML
Abstract

We propose a novel speech separation model designed to separate mixtures with an unknown number of speakers. The proposed model stacks 1) a dual-path processing block that can model spectro-temporal patterns, 2) a transformer decoder-based attractor (TDA) calculation module that can deal with an unknown number of speakers, and 3) triple-path processing blocks that can model inter-speaker relations. Given a fixed, small set of learned speaker queries and the mixture embedding produced by the dual-path blocks, TDA infers the relations of these queries and generates an attractor vector for each speaker. The estimated attractors are then combined with the mixture embedding by feature-wise linear modulation conditioning, creating a speaker dimension. The mixture embedding, conditioned with speaker information produced by TDA, is fed to the final triple-path blocks, which augment the dual-path blocks with an additional pathway dedicated to inter-speaker processing. The proposed approach outperforms the previous best reported in the literature, achieving 24.0 and 23.7 dB SI-SDR improvement (SI-SDRi) on WSJ0-2 and 3mix respectively, with a single model trained to separate 2- and 3-speaker mixtures. The proposed model also exhibits strong performance and generalizability at counting sources and separating mixtures with up to 5 speakers.

View on arXiv
Comments on this paper