ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.11943
22
14

Benchmarking Large Multimodal Models against Common Corruptions

22 January 2024
Jiawei Zhang
Tianyu Pang
Chao Du
Yi Ren
Bo-wen Li
Min-Bin Lin
    MLLM
ArXivPDFHTML
Abstract

This technical report aims to fill a deficiency in the assessment of large multimodal models (LMMs) by specifically examining the self-consistency of their outputs when subjected to common corruptions. We investigate the cross-modal interactions between text, image, and speech, encompassing four essential generation tasks: text-to-image, image-to-text, text-to-speech, and speech-to-text. We create a comprehensive benchmark, named MMCBench, that covers more than 100 popular LMMs (totally over 150 model checkpoints). A thorough evaluation under common corruptions is critical for practical deployment and facilitates a better understanding of the reliability of cutting-edge LMMs. The benchmarking code is available at https://github.com/sail-sg/MMCBench

View on arXiv
Comments on this paper