ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.11666
18
1

P2DT: Mitigating Forgetting in task-incremental Learning with progressive prompt Decision Transformer

22 January 2024
Zhiyuan Wang
Xiaoyang Qu
Jing Xiao
Bokui Chen
Jianzong Wang
    CLL
    OffRL
ArXivPDFHTML
Abstract

Catastrophic forgetting poses a substantial challenge for managing intelligent agents controlled by a large model, causing performance degradation when these agents face new tasks. In our work, we propose a novel solution - the Progressive Prompt Decision Transformer (P2DT). This method enhances a transformer-based model by dynamically appending decision tokens during new task training, thus fostering task-specific policies. Our approach mitigates forgetting in continual and offline reinforcement learning scenarios. Moreover, P2DT leverages trajectories collected via traditional reinforcement learning from all tasks and generates new task-specific tokens during training, thereby retaining knowledge from previous studies. Preliminary results demonstrate that our model effectively alleviates catastrophic forgetting and scales well with increasing task environments.

View on arXiv
Comments on this paper