ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.10220
42
0

AutoFT: Learning an Objective for Robust Fine-Tuning

18 January 2024
Caroline Choi
Yoonho Lee
Annie S. Chen
Allan Zhou
Aditi Raghunathan
Chelsea Finn
    OOD
ArXivPDFHTML
Abstract

Foundation models encode rich representations that can be adapted to downstream tasks by fine-tuning. However, fine-tuning a model on one data distribution often degrades performance under distribution shifts. Current approaches to robust fine-tuning use hand-crafted regularization techniques to constrain the fine-tuning process towards the pretrained model. Yet, it is hard to specify how to adapt relevant characteristics of the foundation model during fine-tuning, as this depends on how the pre-training, fine-tuning, and test data distributions relate to each other. We propose AutoFT, a data-driven approach for robust fine-tuning. Given a task, AutoFT searches for a fine-tuning procedure that enhances out-of-distribution (OOD) generalization. Specifically, AutoFT uses bi-level optimization to search for an objective function and hyperparameters that maximize post-adaptation performance on a small OOD validation set. We evaluate AutoFT on nine natural distribution shifts. Our experiments show that AutoFT significantly improves generalization to OOD inputs, outperforming existing robust fine-tuning methods. Notably, AutoFT achieves a new state-of-the-art on the WILDS iWildCam and FMoW benchmarks, outperforming the previous best methods by 6.0%6.0\%6.0% and 1.5%1.5\%1.5%, respectively.

View on arXiv
Comments on this paper