ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.08920
41
15

Idempotence and Perceptual Image Compression

17 January 2024
Tongda Xu
Ziran Zhu
Dailan He
Yanghao Li
Lina Guo
Yuanyuan Wang
Zhe Wang
Hongwei Qin
Yan Wang
Jingjing Liu
Ya-Qin Zhang
ArXivPDFHTML
Abstract

Idempotence is the stability of image codec to re-compression. At the first glance, it is unrelated to perceptual image compression. However, we find that theoretically: 1) Conditional generative model-based perceptual codec satisfies idempotence; 2) Unconditional generative model with idempotence constraint is equivalent to conditional generative codec. Based on this newfound equivalence, we propose a new paradigm of perceptual image codec by inverting unconditional generative model with idempotence constraints. Our codec is theoretically equivalent to conditional generative codec, and it does not require training new models. Instead, it only requires a pre-trained mean-square-error codec and unconditional generative model. Empirically, we show that our proposed approach outperforms state-of-the-art methods such as HiFiC and ILLM, in terms of Fréchet Inception Distance (FID). The source code is provided inthis https URL.

View on arXiv
Comments on this paper