ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.08458
19
1

Security and Privacy Issues and Solutions in Federated Learning for Digital Healthcare

16 January 2024
Hyejun Jeong
Tai-Myung Chung
    FedML
ArXivPDFHTML
Abstract

The advent of Federated Learning has enabled the creation of a high-performing model as if it had been trained on a considerable amount of data. A multitude of participants and a server cooperatively train a model without the need for data disclosure or collection. The healthcare industry, where security and privacy are paramount, can substantially benefit from this new learning paradigm, as data collection is no longer feasible due to stringent data policies. Nonetheless, unaddressed challenges and insufficient attack mitigation are hampering its adoption. Attack surfaces differ from traditional centralized learning in that the server and clients communicate between each round of training. In this paper, we thus present vulnerabilities, attacks, and defenses based on the widened attack surfaces, as well as suggest promising new research directions toward a more robust FL.

View on arXiv
Comments on this paper