ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.07726
15
1
v1v2 (latest)

Preserving Power Optimizations Across the High Level Synthesis of Distinct Application-Specific Circuits

15 January 2024
Paulo Garcia
ArXiv (abs)PDFHTML
Abstract

We evaluate the use of software interpretation to push High Level Synthesis of application-specific accelerators toward a higher level of abstraction. Our methodology is supported by a formal power consumption model that computes the power consumption of accelerator components, accurately predicting the power consumption on new designs from prior optimization estimations. We demonstrate how our approach simplifies the re-use of power optimizations across distinct designs, by leveraging the higher level of design abstraction, using two accelerators representative of the robotics domain, implemented through the Bambu High Level Synthesis tool. Results support the research hypothesis, achieving predictions accurate within +/- 1%.

View on arXiv
Comments on this paper