ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.07528
14
5

Automatic characterization of boulders on planetary surfaces from high-resolution satellite images

15 January 2024
N. C. Prieur
Brian Amaro
Emiliano Gonzalez
Hannah Kerner
Sergei Medvedev
L. Rubanenko
Stephanie C. Werner
Zhiyong Xiao
D. Zastrozhnov
M. Lapôtre
ArXivPDFHTML
Abstract

Boulders form from a variety of geological processes, which their size, shape, and orientation may help us better understand. Furthermore, they represent potential hazards to spacecraft landing that need to be characterized. However, mapping individual boulders across vast areas is extremely labor-intensive, often limiting the extent over which they are characterized and the statistical robustness of obtained boulder morphometrics. To automate boulder characterization, we use an instance segmentation neural network, Mask R-CNN, to detect and outline boulders in high-resolution satellite images. Our neural network, BoulderNet, was trained from a dataset of > 33,000 boulders in > 750 image tiles from Earth, the Moon, and Mars. BoulderNet not only correctly detects the majority of boulders in images, but it identifies the outline of boulders with high fidelity, achieving average precision and recall values of 72% and 64% relative to manually digitized boulders from the test dataset, when only detections with intersection-over-union ratios > 50% are considered valid. These values are similar to those obtained by human mappers. On Earth, equivalent boulder diameters, aspect ratios, and orientations extracted from predictions were benchmarked against ground measurements and yield values within 15%, 0.20, and 20 degrees of their ground-truth values, respectively. BoulderNet achieves better boulder detection and characterization performance relative to existing methods, providing a versatile open-source tool to characterize entire boulder fields on planetary surfaces.

View on arXiv
Comments on this paper