41
0

An Axiomatic Approach to Model-Agnostic Concept Explanations

Abstract

Concept explanation is a popular approach for examining how human-interpretable concepts impact the predictions of a model. However, most existing methods for concept explanations are tailored to specific models. To address this issue, this paper focuses on model-agnostic measures. Specifically, we propose an approach to concept explanations that satisfy three natural axioms: linearity, recursivity, and similarity. We then establish connections with previous concept explanation methods, offering insight into their varying semantic meanings. Experimentally, we demonstrate the utility of the new method by applying it in different scenarios: for model selection, optimizer selection, and model improvement using a kind of prompt editing for zero-shot vision language models.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.