40
2

Accelerating Neural Networks for Large Language Models and Graph Processing with Silicon Photonics

Abstract

In the rapidly evolving landscape of artificial intelligence, large language models (LLMs) and graph processing have emerged as transformative technologies for natural language processing (NLP), computer vision, and graph-structured data applications. However, the complex structures of these models pose challenges for acceleration on conventional electronic platforms. In this paper, we describe novel hardware accelerators based on silicon photonics to accelerate transformer neural networks that are used in LLMs and graph neural networks for graph data processing. Our analysis demonstrates that both hardware accelerators achieve at least 10.2x throughput improvement and 3.8x better energy efficiency over multiple state-of-the-art electronic hardware accelerators designed for LLMs and graph processing.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.