ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.06836
26
12

Enhancing Emotional Generation Capability of Large Language Models via Emotional Chain-of-Thought

12 January 2024
Zaijing Li
Gongwei Chen
Rui Shao
Dongmei Jiang
Liqiang Nie
ArXivPDFHTML
Abstract

Large Language Models (LLMs) have shown remarkable performance in various emotion recognition tasks, thereby piquing the research community's curiosity for exploring their potential in emotional intelligence. However, several issues in the field of emotional generation tasks remain unresolved, including human preference alignment and emotional generation assessment. In this paper, we propose the Emotional Chain-of-Thought (ECoT), a plug-and-play prompting method that enhances the performance of LLMs on various emotional generation tasks by aligning with human emotional intelligence guidelines. To assess the reliability of ECoT, we propose an automated model-based evaluation method called Emotional Generation Score (EGS). EGS incorporates Goleman's Emotional Intelligence Theory as a consensus of human experts, providing a new perspective on the evaluation of emotional generation tasks. Extensive experimental results demonstrate the effectiveness of ECoT and EGS. Further, we discuss the promise of LLMs in the field of emotional intelligence and present key insights into the LLMs with the ECoT in emotional generation tasks.

View on arXiv
Comments on this paper