ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.06634
38
3

CCFC: Bridging Federated Clustering and Contrastive Learning

12 January 2024
Jie Yan
Jing Liu
Zhonghan Zhang
    FedML
ArXivPDFHTML
Abstract

Federated clustering, an essential extension of centralized clustering for federated scenarios, enables multiple data-holding clients to collaboratively group data while keeping their data locally. In centralized scenarios, clustering driven by representation learning has made significant advancements in handling high-dimensional complex data. However, the combination of federated clustering and representation learning remains underexplored. To bridge this, we first tailor a cluster-contrastive model for learning clustering-friendly representations. Then, we harness this model as the foundation for proposing a new federated clustering method, named cluster-contrastive federated clustering (CCFC). Benefiting from representation learning, the clustering performance of CCFC even double those of the best baseline methods in some cases. Compared to the most related baseline, the benefit results in substantial NMI score improvements of up to 0.4155 on the most conspicuous case. Moreover, CCFC also shows superior performance in handling device failures from a practical viewpoint.

View on arXiv
Comments on this paper