ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.06469
20
19

Batch-ICL: Effective, Efficient, and Order-Agnostic In-Context Learning

12 January 2024
Kaiyi Zhang
Ang Lv
Yuhan Chen
Hansen Ha
Tao Xu
Rui Yan
ArXivPDFHTML
Abstract

In this paper, by treating in-context learning (ICL) as a meta-optimization process, we explain why LLMs are sensitive to the order of ICL examples. This understanding leads us to the development of Batch-ICL, an effective, efficient, and order-agnostic inference algorithm for ICL. Differing from the standard N-shot learning approach, Batch-ICL employs NNN separate 1-shot forward computations and aggregates the resulting meta-gradients. These aggregated meta-gradients are then applied to the forward computation of a zero-shot query to generate the final prediction. This batch processing approach renders the LLM agnostic to the order of ICL examples. Through extensive experiments and analysis, we demonstrate that Batch-ICL consistently outperforms most permutations of ICL examples. In some cases, it even exceeds the performance of the best order for standard ICL, all while reducing the computational resources required. Furthermore, we develop a novel variant of Batch-ICL featuring multiple "epochs" of meta-optimization. This variant implicitly explores permutations of ICL examples, further enhancing ICL performance.

View on arXiv
Comments on this paper